Chirality recognition of the protonated serine dimer and octamer by infrared multiphoton dissociation spectroscopy.

نویسندگان

  • Fumie X Sunahori
  • Guochun Yang
  • Elena N Kitova
  • John S Klassen
  • Yunjie Xu
چکیده

Infrared multiphoton dissociation (IRMPD) spectroscopy has been used to record IR signatures of chirality recognition in the protonated serine dimer and octamer in the 3200-3800 cm(-1) region. This is the first IRMPD study to investigate the heterochiral biomolecular system by utilizing the isotope-labelled species. Noticeable differences in the homo- versus heterochiral IRMPD spectra have been obtained experimentally for both the dimer and octamer. Different dissociation patterns have been noted not only between the homo- and heterochiral octamers, but also between the two -OH stretching vibrational bands of the same chirality species. Systematic theoretical searches have been carried out to identify the most stable conformers of both the homo- and heterochiral protonated serine dimer and octamer. The final geometry optimization and harmonic vibrational calculations have been performed at the MP2/6-311++G(d,p) level for the homo- and heterochiral protonated serine dimer and at the B3LYP/6-31G(d) level for the homo- and heterochiral protonated serine octamer. For the homo- and heterochiral dimer, good agreement between the experimental and theoretical spectra has been achieved and the major conformers have been identified. For the homo- and heterochiral octamer, the main IR features observed have been satisfactorily reproduced theoretically and the dominant conformers identified. More than one main conformer has been identified for the homochiral octamer. This conclusion has been further supported by the analysis of the wavelength specific dissociation products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chiroselective self-directed octamerization of serine: implications for homochirogenesis.

Serine undergoes chiroselective self-directed oligomerization to form a singly protonated octamer under positive ion electrospray conditions, as identified by ion trap tandem mass spectrometry. The experiments also show a series of higher-order clusters (metaclusters) corresponding to [(Ser8H)n]n+, n = 1, 2, 3. There is a magic number effect favoring formation of the protonated octamer over its...

متن کامل

Kinetic control in the CID-induced elimination of H3PO4 from phosphorylated serine probed using IRMPD spectroscopy.

InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy was used to assay the structural features of the fragment ions resulting from the elimination of H3PO4 in the Collision-Induced Dissociation (CID) of protonated serine. The results are interpreted with the aid of density functional theory calculations. Experiment and theory point to an aziridine-ring structure, implying participation of...

متن کامل

Chirality-dependent structuration of protonated or sodiated polyphenylalanines: IRMPD and ion mobility studies.

Ion mobility experiments are combined with Infra-Red Multiple Photon Dissociation (IRMPD) spectroscopy and quantum chemical calculations for assessing the role of chirality in the structure of protonated and sodiated di- or tetra-peptides. Sodiated systems show a strong chirality dependence of the competition between Na(+)O and Na(+)π interactions. Chirality effects are more subtle in protonate...

متن کامل

Mode-specific fragmentation of amino acid-containing clusters.

A combination of infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory calculations have been employed to study the structures and mode-specific dissociation pathways of the proton-bound dimer of 3-trifluoromethylphenylalanine (3-CF3-Phe) and trimethylamine (TMA). Three structural motifs are identified: canonical (charge-solvated), zwitterionic (charge-separat...

متن کامل

Characterization of erythromycin analogs by collisional activated dissociation and infrared multiphoton dissociation in a quadrupole ion trap.

The effectiveness of two activation techniques, collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD), is compared for structural characterization of protonated and lithium-cationized macrolides and a series of synthetic precursors in a quadrupole ion trap (QIT). Generally, cleavage of the glycosidic linkages attaching the sugars to the macrolide ring and water lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2013